While there is a growing market for organic solar cells—they contain materials that are cheaper, more abundant, and more environmentally friendly than those used in typical solar panels - they also tend to be less efficient in converting sunlight to electricity than conventional solar cells.

Now, scientists who are members of the Center for Computational Study of Excited-State Phenomena in Energy Materials (C2SEPEM) a new energy -related science center based at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), have solved a mystery that could lead to gains in efficiency.

They pinpointed the source of an ultrafast and efficient process that spawns several carriers of electrical charge from a single particle of light in organic crystals that are integral to this increasingly popular form of .

This process - called "" because it is akin to the splitting of atomic nuclei in nuclear fission to create two lighter atoms from a heavier one - holds promise for dramatically boosting the efficiency of  by rapidly converting more of sunlight's energy to electrical charges instead of losing it to heat.

The research team found a new mechanism explaining how this reaction can occur in just tens of femtoseconds (quadrillionths of a second), before other competing effects can steal away their energy. Their study was published on Dec. 29 in the journal Physical Review Letters.

"We actually discovered a new mechanism that allows us to try to design better materials," said Steven G. Louie, director of C2SEPEM, a DOE-supported center that includes researchers from Berkeley Lab; the University of California, Los Angeles; the University of Texas at Austin; and the Georgia Institute of Technology.

Louie, a co-leader of the study, is also a senior faculty scientist in Berkeley Lab's Materials Sciences Division and a professor of physics at UC Berkeley. C2SEPEM focuses on developing theories, methods, and software to help explain complex processes in energy-related materials.

In the splitting process, a composite particle composed of an electron, which has a negative charge, and its partner hole - a vacant electron position in a material's atomic structure that behaves like a particle in carrying a positive charge - rapidly converts into two . This doubles the charge-carrying potential in the material while avoiding the loss of energy as heat.


"There's a lot we still don't understand about the fundamental physics of this process in crystalline materials that we are hoping to shed more light on," said Jeffrey B. Neaton, associate director of C2SEPEM, who co-led the study with Louie.

Neaton is also the Associate Laboratory Director for Energy Sciences at Berkeley Lab, the director of Berkeley Lab's Molecular Foundry, and a physics professor at UC Berkeley. "The computational method that we developed is very predictive, and we used it to understand singlet fission in a new way that may allow us to design materials even more efficient at harvesting light, for example."

Louie noted that many past efforts had focused on just a few molecules within the material - in this case, the crystallized form of pentacene, which is composed of hydrogen and carbon - to learn about these exotic effects. But such approaches may have oversimplified the effects driving singlet fission.

"There have been many theoretical efforts to try to understand what's going on," he said.